What explains policy impact of ecosystem service knowledge?

DECEMBER 10, 2014
STEPHEN POSNER
PHD CANDIDATE
UNIVERSITY OF VERMONT

Science ←→ Policy

Science ←→ Policy

Science ←→ Policy

Research question 1

How do decisions-makers use ecosystem service knowledge?

Research question 1

Interviews in Hawaii, Belize, Vancouver Island

Types of knowledge use:

- Conceptual
- Strategic
- Instrumental

Research question 2

What factors explain the impact of ecosystem service knowledge?

Ecosystem Service Knowledge can be...

Salient

Relevant to the needs of decision-makers

Credible

Scientific arguments are trustworthy and expert-based

Legitimate

Produced in an unbiased way that fairly considers different points of view

Cash, D. W., Clark, W. C., et al. (2003). Knowledge systems for sustainable development. PNAS, 100(14), 8086-8091

Rowe, A., & Lee, K. (2012). Linking Knowledge with Action. Palo Alto, CA: Packard Foundation.

Hypothesis 1

More *salient/credible/legitimate* ecosystem services knowledge is associated with more impact.

Ecosystem Service Knowledge Impact...

Change perspectives

- People become aware of and understand ecosystem services.
- Conversations and language shifts.

Change plans or policies

- A new policy or finance mechanism is established based on an ecosystem service framework.

Sample from the Natural Capital Project

Results

Hypothesis 2

I measured and tested many more explanatory variables...

Explanatory variables

Attributes of knowledge	Characteristics of process	Contextual conditions
 Perceived credibility, legitimacy, and salience of the ecosystem service knowledge 	 Joint production of ESK (frequency and type of interaction btwn scientists and decision-makers) 	 Capacity to measure baseline ES and human activities
 How ESK is represented (monetary valuation vs. biophysical units vs. social variables; maps vs. indices; absolute vs. relative values) 	 Stakeholder representation (% represented) Presence of conflict or consensus 	 Capacity to monitor changes to ES and human activities Capacity to implement policies
 Sources of ESK (traditional vs. expert opinion) 	Trust among stakeholders	• Year
 Model complexity (Tier 0, 1, or 2 InVEST models) 	 Power distribution among decision-makers and stakeholders 	
	Length of project	

Results

Information theoretic approach

Factors that best explain impact:

- Legitimacy of knowledge
- Interactions between scientists and decisionmakers
- Institutional capacities

Summary

Ecosystem service knowledge is most often used conceptually and strategically.

Salience, credibility, and legitimacy of knowledge are associated with more policy impact.

Other factors matter too...

Thanks

Taylor Ricketts, PhD advisor Emily McKenzie, WWF and The Natural Capital Project

WWF Valuing Nature Fellowship, UVM Office of Sustainability

Stephen Posner sposner@uvm.edu

Impact pathways

Increasing impact

Figure 2. Iterative progression of conceptual, strategic and instrumental use of ESK in the policy and planning cycle

